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Abstract- This Project aims at achieving global optimal solution of complex problems, such as Pressure vessel, using extended version of real 

coded genetic algorithms (RCGA). Since genetic algorithm (GA) consists of several genetic operators, namely selection procedure, crossover, and 

mutation operators, that offers the choice to be modified in order to improve the performance for particular implementation and it is found that the results 

obtained from RCGA are better as its search is for global optimum as against the local optimum in traditional search methods. The results of the RCGA 

have been checked using ANSYS, and it is found to perform satisfactorily. 
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1. INTRODUCTION 

It is well known that the pressure vessel has been 
widely used in a variety of areas such as chemical 
engineering, medical treatment, aviation and astronautics 
as well as nuclear engineering. Currently the pressure 
vessel tends to be developing in large-scale and high-
parameter directions, especially in chemical industry. 
However, the pressure vessel is generally subjected to a 
complex environment such as high pressure and high 
temperature. This means not only a strong challenge 
regarding the performance of the material and structure, 
but also concerning the design of the pressure vessel. How 
to achieve a perfect combination of excellent performance 
and low cost in the design of a pressure vessel under 
certain design conditions is an important topic. 

2. REAL CODED GENETIC ALGORITHM (RCGA) 

2.1 Representationof Design Variables 

We have already noted the complicated proceed=ss 
of encoding and decoding used in binary GA.in real coded 
GA ,the design variables represented as floating point 
numbers. If a problem has n design variables, then the 
design vector can be represented exactly in the same form 
as used for gradient-based method. 

X={x1,x2,x3,…,xn} 

Note that the binary GA, the design vector was 
represented by a string and the elements x1,x2,x3,….xn were 
each represented as binary substrings of m bits each. In real 
GA, we use n floating point numbers while in binary GA, 

we use m * nbits to represents the design vector. The 
realGA can use single- or double-precision arithmetic 
depending on the computer. Since real GA is search 
algorithm which starts from a population of values, like for 
binary GA, these move limits have the form xil≤ xi ≤ xiU,i =1 
to n. 

The fitness value of the function is calculated using  

f(x) = f(x1 ,x2 ,x3,……,xn). 

Real GA therefore saves us from the complexity of 
using the encoding and decoding operations of binary GA. 

2.2 Starting population 

The starting population is created by taking a 
floating point number within the design space for each 
variable. Thus, the starting population with all design 
variables lying between 1 and 10 may be expressed in the 
form using random numbers with up to eight decimal 
places. 

 

Member 1 :  2.34527849  1.342721921.23972398…7.23582302 

x11   x12  x13   x1n 

 

Member 2 :7.54989200 3.04011890 2.18998363…   5.82990872 

x21x22   x23   x2n 

: 

: 
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: 

Member N :9.82019902 4.023840025.77810282…0.12927494 

xN1    xN2   xN3 xNn 

The initial population is therefore a matrix of real 
numbers of size N*note that random sampling can also be 
enhanced by uniform sampling to make sure that all parts 
of the design space are adequately sampled. In addition, a 
complement approach could be used by subtracting the 
population of each design variable from its upper bound. 

Just as in binary GA, it is advantageous to have a 
larger initial population compared to the population value 
used in the GAgenerations. Thus, if we start with a 
population of 1.2 N-2 N,the N best points can be selected 
for further operations such as reproduction, crossover rand 
mutation operations. However, in real GA, some of those 
operations need to be defined in a new manner compared 
to binary GA. 

2.3 Reproduction 

Roulette wheel selection can be used for real GA. 
The fitness function and cumulative probability can then be 
calculated in exactly the same manner as for binary GA. 
Just as in binary GA,we can select the mating pool 
members as 1,3,2,1 and3 .the mates can then be paired as 
(1,3) and(2,1) assuming 80 per cent crossover. The only 
difference in the reproduction operations for realGA is that 
string i is replaced by design variable i which is the design 
vector {xi1,xi2,xi3,…xin}.we also see that scaling correction 
and tournament selection can be applied to real GA .the 
reproduction operator does not create anynew points. 

2.4 Crossover 

The crossover operator used for real GA is 
different from that used binary GA. A simple approach we 
may follow is to take two sites along the parent as the 
crossover site and then exchange the variables inside the 
crossover sites. Forexample, if there are two six-variables 
parents as given below  

Father ={xf1,xf2,xf3,xf4,xf5,xf6}, 

Mother={xm1,xm2,xm3,xm4,xm5,xm6}, 

We select two crossover sites randomly and get 1 
and 3.the children are then as shown in the following. 

Father = { xf1, xf2, xf3, xf4, xf5, xf6}, 

 Mother= { xm1, xm2, xm3, xm4, xm5, xm6}, 

The above strategy well with binary GA where the 
variables are coded strings, however in real GA the 
swapping of design variables does not introduced any new 
information. We need a method to create new design 

variables .one approach for creating new design variables is 
to use the blending method and define the children. 

x(1)new =βxmn + (1 –β)xfn , 

x(2)new = βxfn + (1 – β)xmn 

In the above ,β ϵ (0,1),xmn is the nth design variable 
in the mother design vector and xfn is the nth design 
variable in the father design vector .the limiting case occurs 
when β =0 =x(1)new= xfn,x(2)new=xmn and when β=0.5,the two 
children are the average of the two-parent design variables 
and are essentially identical twins.in general ,it is a good 
idea to take a random number βϵ(0,1) and find the values of 
the two children. This method is also called the blending 
method since it combines information from both children. 
This method is also called the blending method since 
combines information from both parents to get the children 
and therefore simulates nature. However, the blending 
method described in now interpolates between the parent 
values and is not capable of extrapolating into the design 
space. 

Blending approaches to crossover which 
extrapolate have also been proposed by some researchers. 
One such approach is called the linear crossover where 
there children are created using two parents as follows: 

x(1)new= 0.5xmn+0.5fn, 

x(2)new=1.5xmn-0.5xfn, 

X(3)new=-0.5xmn+1.5xfn, 

Here the first child is interpolated while the second 
and third children are extrapolated. A problem with 
extrapolation is that sometimes a child may go outside the 
bounds of the design variable.in such a case, the child is not 
selected. The best two children among the three are selected 
for further operations.as an example, 
considerxmn=1,xfn=2.Then,the children are given by 
x(1)new=1.5, x(2)new=0.5, x(3)new =2.5.thus we see that the linear 
crossover both interpolates and extrapolates using the 
parent values . 

A further generalization of the concept of the linear 
crossover in needed to ensure that more than three children 
can be created in case more than one need to be discarded 
because they lie outside the move limits for the design 
variable .we can define any number of children of two 
parents using heuristic crossover. 

xnew = β(x mn-x fn) +x mn. 

 This approach allows generation of children both 
inside and outside the parent range depending on the value 
of the random number β ϵ (0, 1). Heuristic crossover also 
introduces an element of randomness in the crossover 
process which is absent in linear crossover. 
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As an example of implementing the two-point 
heuristic crossover consider the two-point design vectors, 
shown below: 

Father= {2.762, 4.384, 1.236, 0.524}, 

Mother= {7.310, 8.236, 5.426, 4.316}, 

Here each design variable has abound of (0, 10) as 
the lower and upper limit. Using a random number 
generator, we pick two crossing sites, 2 and 3. Again, we 
generate three random numbers β ϵ (0, 1) and get 0.1783, 
0.8264 and 0.3123, using these values and heuristic 
crossover, we get three children: 

x(1)new =0.1783(8.236-4.384)+8.236=8.9228, 

x(2)new =0.8264(8.236-4.384)+8.236=38.0745, 

x(3)new = 0.3123(8.236-4.384)+8.236=9.4389. 

The second child is outside the movie limit of the 
design variable and is not selected, we then take the other 
two values to farm the children: 

Father= {2.762, 4.384, 1.236, 0.524}, 

Mother={7.310, 8.236, 5.426, 4.316}, 

The tow point heuristic crossover is good approach 
to use for real coded GA and is recommended for 
applications. 

2.5 Mutation 

As binary GA, mutation is needed in real GA to 
ensure that the algorithm does get stuck or coverage to a 
local minimum. To apply mutation with probability pm. We 
change n× N× pm designvariables in a random manner 
.recall that n× N is the number of real numbers in the 
population .as an example, consider design vectors of size n 
=6 and N=10 to make up the population. Taking a mutation 
probability ,pm=0.05,we need to change three design 
variables , that is (6×10×0.05=3).to do this, we randomly 
select three variables from the population and replace them 
by a random number lying between the move limits 
corresponding to these variables.  

In summary, we point out that many problems involving a 
low level of discretization can be solved using binary GA, 
even when the variables are real. However, as the desired 
accuracy of the optimal point increases, real GA becomes 
advantageous in terms of storage requirements. Recent 
research literature shows a growing popularity of real GA 
over binary GA. 

3. PROBLEM FORMULATION 

The Problem is to design a compressed air storage tank 
with a working pressure of 1000 psiand a minimum volume 
of 750 ft3. The schematic of a pressure vessel is shown in 

Fig.7.1. The cylindrical pressure vessel is capped at both 
ends by hemispherical heads. Using rolled steel plate (SAEJ 
2340 TYPE 830 R), the shell isto be made in two halves that 
are joined by two longitudinal welds to form a cylinder. 
Each head is forged and then welded to the shell. Let the 
design variables be denoted by the vector  

X=[x1, x2, x3, x4] 

Where  

x1 is the spherical head thickness,  

x2 is the shell thickness,  

x3andx4 are the radius and length of the shell, 
respectively.  

The objective in this Project is to minimize the 
manufacturing cost of the pressurevessel. The 
manufacturing cost of the pressure vessel is a combination 
of material cost, welding costand forming cost. That can be 
refer inSandgren (1990) for more details on how cost is 
determined. 

The constraints are set in accordance with respective ASME 
codes. The mathematical model of theproblem is: 

3.1 Objective function 

 Here our main objective is to reduce the cost by 
reducing weight of Pressure Vessel. So the objective 
function  

2
14

2
423

2
1321 84.191661.37781.16224.0)( xxxxxxxxxxf +++=  

== Rx1  Radius of the shell 

== Lx2  Length of the shell 

== sTx3  Thickness of the shell 

== bTx4  Thickness of the dish end 

 

 

Fig: 3.1: Cylindrical pressure vessel 

3.2 Design variables 

1. Radius ( R) 

2. Length (L) 

1x R=

2x L=

3x Ts=4x Th=

1x R=

2x L=

3x Ts=4x Th=4x Th=
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3.Thickness of the shell 

4.Thickness of the dish end 

3.3 Design parameters 

1. Circumferential or Hoop Stress 

2. Longitudinal Stress 

3. Volume 

 

3.4 Design constraints 

The four important constraints under consideration are  

1. Hoop stress≤ Allowable stress 

( ) 00193.0 411 ≤−= xxxg  

2. Longitudinal stress≤ Allowable stress 

( ) 000954.0 312 ≤−= xxxg  

3. Volume≤750×1728inch3  

( ) 0
3
41728750 2

2
1

3
13 ≤−−×= xxxxg ππ  

 

4. Length 

( ) 024024 ≤−= xxg  

3.5 Variable bounds 

The upper and lower bounds on two design variables 
are 

1. 15025 1 ≤≤ x  

2. 24025 2 ≤≤ x  

3. 25.10625.0 3 ≤≤ x  

4. 25.10625.0 4 ≤≤ x  

Note: All are in inch 

 

4. PROBLEM DESCRIPTION 

 A typical input data required to develop a 
mathematical model for pressure vessel design is 

1. Pressure vesselmaterial= SAE J2340 – 830R 

Where R=High Strength Recovery 
Annealed 

2. Modulus of elasticity (E) = 200x109 N/mm2 

3. Yield Strength=960MPA 

4. Factor of safety=1.78 

5. Allowable Yield Strength = 540 MPA 

6. Applied Pressure=6.80272N/mm2(1000 Psi) 

4.1 Input for Real coded GA 

Binary GA, mutation is needed in real GA to 
ensure that the algorithm does get stuck or coverage to a 
local minimum. To apply mutation with probability pm. We 
change n× N× pm design variables in a random manner 
recall that n× N is the number of real numbers in the 
population as an example, consider design vectors of size n 
=6 and N=10 to make up the population. Taking a mutation 
probability, pm=0.05, we need to change three design 
variables, that is (6×10×0.05=3). 

 

5. RESULTS AND DISCUSSIONS 

The values of best design variables and the 
constraints for the 500 iteration obtained after running the 
program for Real coded Genetic Algorithm written in the 
C-language is given below.  

 

5.1 Program Results 

Table: 5.1: Programming Results 
S.N

o f(x)in $ X1 X2 X3 X4 g1 g2 g3 g4 

1 
115339.8

198 
6.11
90 

5.87
98 

46.42
78 

197.4
326 

5.22
2965 

5.43684
2 

46014
4.3 

42.56
74 

2 
112644.9

246 
6.12
43 

5.88
50 

46.46
23 

187.5
280 

5.22
7579 

5.44179
3 

39589
4.7 

52.47
20 

. . . . . . . . . . 

22 
115339.8

198 
6.11
90 

5.87
98 

46.42
78 

197.4
326 

5.22
965 

5.43684
2 

40614
4.3 

42.56
74 

23 103103.1
814 

4.35
50 

1.04
31 

86.20
90 

193.6
479 

2.69
1221 

0.22062
8 

59089
75 

4635
21 

. . . . . . . . . . 

155 
15161.85
98 

1.55
39 

195.
28 

0.775 0.894 
0.76
0824 

0.92857
6 

27686
.69 

45.23
60 

156 
13590.13

17 
44.1
67 

173.
78 

0.537 0.894 
0.36
1261 

1.58407
2 

27686
.69 

45.23
60 

. . . . . . . . . . 
199

3 
6064.045

2 
0.81
21 

0.39
24 

41.09
06 

190.2
364 

0.01
9067 0.00037 

3670.
959 

49.76
36 

199
4 

6006.531
5 

0.80
41 

0.39
24 

41.09
06 

190.2
364 

0.01
103 

0.00037 
3670.
959 

49.76
36 

. . . . . . . . . . 
365

5 
5985.691

5 
0.80
14 

0.39
24 

41.09
06 

190.1
739 

0.00
8309 

0.00037 
333.1

46 
49.82

61 
365

6 
5946.768

2 
0.79
59 

0.39
24 

41.09
06 

190.1
739 

0.00
2848 

0.00037 3339.
146 

49.82
61 

. . . . . . . . . . 

. . . . . . . . . . 
104
99 

5940.363
3 

0.79
59 

0.39
24 

41.09
06 

189.8
874 

0.00
2848 

0.00037 
1819.
803 

50.11
26 

 

Table 5.2: Comparison of RCGA with other Optimization 
Methods. 

 Sandgren Fu Kannan Lewis RVR 

Method Penalty PSO ALM NLP RCGA 

R[inch] 47 43.381 58.291 38.2760 41.0906 

L[inch] 117.701 111.745 43.690 223.299 189.8874 
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Ts[inch] 1.125 1.125 1.125 0.750 0.7959 

Th[inch] 0.625 0.625 0.625 0.375 0.3924 

g1 -0.194 -0.170 0.000 -0.003 -0.00285 

g2 -0.0283 -0.262 -0.117 -0.014 -0.0003956 

g3 -0.0510 -0.534 -0.818 -0.070 -1849.0951 

g4 0.054 -1.046 -1.109 -1.519 -50.1126 

Objective[$] 8129.800 8048.619 7198.200 5980.950 5940.3633 

Where 

Penalty : Penalty Approach 

ALM  : Assets Liability Management algorithm 

NLP  :Non-linear programming Technique 

PSO  : particle swarm optimization 

RCGA : Real coded Genetic Algorithm 

From above table it is clear that theReal coded GA 
gives the best results hence it can have beneficially used for 
evaluating the cost of the pressure vessel. 

6. ANSYS Analysis: 

 

Fig: 6.2: Design of pressure vessel 

 

Fig: 6.3: Structure of pressure Vessel 

 

Fig: 6.4: von missesStress of pressure vessel 

 

Fig: 6.5: Principle stressesalong X-direction 

 

Fig: 6.6 Principle stresses acting along y -direction 

1

L2          

L3          

L5          

L6          

L14         

L8          

L7          L1          X

Y

Z

                                                                                

AREAS

TYPE NUM

1

X

Y

Z

                                                                                

ELEMENTS

/EXPANDED

TYPE NUM

1

MN
MX

X

YZ

                                                                                
127.635

164.16
200.684

237.208
273.733

310.257
346.782

383.306
419.83

456.355

NODAL SOLUTION

STEP=1
SUB =1
TIME=1
/EXPANDED
SEQV     (AVG)
DMX =.313E-05
SMN =127.635
SMX =456.355

1

MN MX

X

YZ

                                                                                
144.311

186.382
228.452

270.522
312.593

354.663
396.734

438.804
480.875

522.945

NODAL SOLUTION

STEP=1
SUB =1
TIME=1
/EXPANDED
S1       (AVG)
DMX =.313E-05
SMN =144.311
SMX =522.945

1

MNMX

X

YZ

                                                                                
-4.46

39.262
82.984

126.706
170.428

214.15
257.872

301.594
345.316

389.038

NODAL SOLUTION

STEP=1
SUB =1
TIME=1
/EXPANDED
S2       (AVG)
DMX =.313E-05
SMN =-4.46
SMX =389.038
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Fig: 6.7 Principle stresses acting along Z–direction 

The results of the real coded GA have been checked using 
ANSYS, and it is found to perform satisfactorily. 

7. CONCLUSION AND FUTURE SCOPE 

In the present work parameters such as thickness of the 
shell, and dish end, length and radius of the pressure vessel 
are optimized by making use of Real coded genetic 
algorithm powerful non-traditional optimization method 
and these results are compared with other Optimization 
Methods. 

• It is found that the results obtained from RCGA are 
better as its search is for global optimum as against 
the local optimum in traditional search methods. 
The results of the RCGA have been checked using 
ANSYS, and it is found to perform satisfactorily. 

• The various authors have solved the problem 
using different algorithms such as Penalty 
Approach, Assets Liability Management algorithm, 
Non-linear programming Technique and particle 
swarm optimization, But it is found that the results 
obtained by using proposed algorithm is better 
optimized than any other earlier solutions 
reported. 

• It can be concluded that by applying RCGA, the 
optimal design parameters for the pressure vessels 
are obtained and the objective minimization of cost 
by reducing weight of Pressure vessel is achieved. 

• In the present study the application of RCGA has 
been shown for a Pressure vessel problem with 
four variables and four design constraints. 

 

Future scope: 

• In the proposed study the application of RCGA can 
be extended for pressure vessels with more than 

four variables and constraints (including Thermal 
Stresses). 

The present problem can also be extended for the use of the 
composite materials for weight minimization. 
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